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Abstract

Large-scale automated ECG screening can combat the
widespread underdiagnosis of Chagas disease due to lim-
ited serological test coverage. To this end, our team,
CinCo Amigos, developed a computational approach to
detect Chagas disease from electrocardiograms (ECGs) - a
two-stage domain-adversarial training process to address
key issues of significant label noise, extreme class imbal-
ance, and substantial domain shift.

Our framework first pre-trains a custom neural net-
work on a large, noisy dataset. Early Learning Regular-
ization (ELR) and Domain-Adversarial Neural Network
(DANN) were integrated to mitigate label errors and en-
courage domain-invariant features respectively. To handle
class imbalance, we employed a objective combining Fo-
cal Loss (LMFLoss) and Label-Distribution-Aware Mar-
gin (LDAM) Loss. In the second stage, the model was fine-
tuned on high-quality datasets using feature distillation.

Our model achieved an official Challenge score of 0.250
(ranked 7 of 40 teams), and was the best performing on
one of the three test sets. This work suggests that our in-
tegrated approach provides a robust framework for auto-
mated ECG-based diagnosis and can improve generalisa-
tion in challenging real-world scenarios.

1. Introduction

This paper presents our entry to the 2025 PhysioNet
Challenge [1–3] on automated, open-source ECG algo-
rithms for Chagas disease detection. Training data were
made available from several distinct collections [4–6].

The primary difficulties are: significant label noise,
as the largest dataset has unreliable, self-reported labels
(CODE-15) while smaller datasets provide reliable anno-
tations; an extreme class imbalance with 2% positive class
prevalence; and a significant domain shift, evidenced by
a stark performance drop between internal testing versus
public scoring metrics.

To address these, we developed an approach that com-
bines a customised convolutional neural network with
noise-robust learning, domain-adversarial techniques, and
advanced class-imbalance handling.

2. Methods

Our approach begins with robust data preprocessing and
augmentation, followed by training a novel model archi-
tecture for ECG analysis. The training strategy first in-
volves pre-training on a large, noisy dataset to learn gener-
alisable features, and subsequently fine-tuning on smaller,
high-quality datasets for Chagas disease detection.

2.1. Data Preprocessing

All 12-lead ECG signals were resampled to 500 Hz, and
filtered with a bandpass filter (1 Hz - 30 Hz) to remove
baseline wander and high-frequency noise, and notch fil-
ters at 50 Hz and 60 Hz to eliminate powerline interfer-
ence. Finally, each recording underwent z-score normali-
sation to standardise the signal distribution.

A diverse set of augmentation methods were applied
during training, including adding Gaussian noise, random
scaling, temporal shifting, dropping and cutting out of sig-
nal segments, lead mixing [7], and time warping.

2.2. Model Architecture

Our model adopts a modular architecture composed of
a unified encoder and two parallel classifier heads, as de-
picted in Fig. 1. As we later show, the encoder can be
switched for any common backbone encoder.

The encoder generates a domain-invariant feature rep-
resentation from multi-modal inputs. It consists of two
sub-modules: 1) an ECGNeXt, serving as the backbone,
which is adapted from ECGFounder [8] with refinements
from ConvNeXt [9] to capture temporal patterns; and 2)
a Meta Net, a multi-layer perceptron that processes demo-
graphic covariates (age and sex). Features from both are
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Figure 1. Architecture of the proposed network. The uni-
fied encoder, comprising the ECGNeXt and Meta Net, pro-
duces a shared feature representation. This representation
is then fed into two separate heads: a task classifier for
Chagas disease prediction and a domain classifier for ad-
versarial training.

concatenated to form a unified representation.
This shared representation is then fed into two classifier

heads. The task classifier performs the final binary predic-
tion for Chagas disease. Concurrently, the domain classi-
fier, integral to our adversarial training, learns to identify
the data’s source domain, compelling the encoder to pro-
duce more generalisable, domain-agnostic features.

2.3. Training Strategy

To address the key challenges, we devised the two-stage
training paradigm illustrated in Fig. 2. The objective is a
composite of several specialised losses, activated dynami-
cally across the two stages.

Stage 1: Pre-Training with Noise and Domain Adap-
tation. The goal of this stage is to learn robust, domain-
invariant features from the large-scale, noisy CODE15

dataset, by combining three techniques.
First, to handle class imbalance, we used LMFLoss, a

weighted combination of Focal Loss (which focuses on
hard-to-classify examples) and Label-Distribution-Aware
Margin (LDAM) Loss (which enforces a larger margin for
the minority class). The combined objective is defined as:

LLMF = − α(1− py)
γ log(py)

− β [dy log(σ(s(zy −∆y)))

+(1− dy) log(1− σ(s(zy −∆y)))]

(1)

where py is the predicted probability, dy ∈ {0, 1} is the
true binary label, zy is the original logit, σ(·) is the sigmoid
function, ∆y is the class-dependent margin, and s is the
scale parameter from LDAM which adjusts the logits to
control the steepness of the loss landscape.

Second, to counteract label noise, we integrated Early
Learning Regularization (ELR) [10]. It adds a regularisa-
tion term to the standard Binary Cross-Entropy (BCE) loss,
preventing the model from memorising incorrect labels by
regressing towards its historical consensus. The regulariser
is an MSE loss between the current prediction and an ex-
ponential moving average (EMA) of past predictions.

Third, for domain generalisation, we employed a
Domain-Adversarial Neural Network (DANN) which we
have previously used for ECGs [11,12]. To create a diverse
set of domains, we incorporated several external datasets
(e.g., CSPC, PTB from PhysioNet 2021 [13]). Each of
these datasets, along with the primary CODE15 data, was
treated as a distinct domain. Crucially, the diagnostic la-
bels from these external datasets were discarded.

The DANN framework involves two competing objec-
tives. The domain classifier is trained to predict the source
domain out of K possible domains. Its objective is to min-
imise the standard multi-class cross-entropy loss, LD:

LD =

K∑
k=1

−[dk log(d̂k) + (1− dk) log(1− d̂k)] (2)

where d is the one-hot true domain label and d̂ is the pre-
dicted domain probability distribution.

Concurrently, the encoder is trained to fool the classifier
by minimising a confusion loss, LC. This loss encourages
a uniform prediction from the domain classifier, which cor-
responds to high prediction entropy. We therefore define it
as the negative entropy of the classifier’s output:

LC =

K∑
k=1

d̂k log(d̂k) (3)

This adversarial process forces the encoder to learn
domain-agnostic representations.
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Figure 2. The proposed two-stage training strategy. Stage 1 (Pre-training) focuses on learning domain-invariant features
from large-scale noisy data using DANN and ELR. Stage 2 (Fine-tuning) adapts the model to high-quality data using
feature distillation to retain generalisability.

The optimization objectives for the encoder (θe), task
classifier (θt), and domain classifier (θd) are defined as fol-
lows:

θ∗e = argmin
θe

(LLMF + λELRLELR + λDANNLC) (4)

θ∗t = argmin
θt

(LLMF + λELRLELR) (5)

θ∗d = argmin
θd

LD (6)

Stage 2: Fine-Tuning with Preservation of Domain
Generalisation. In this stage, the model is adapted us-
ing smaller, high-quality datasets. The key challenge is to
specialise the model for the target task without forgetting
the robust, domain-invariant features learned during pre-
training. We consider two approaches to this.

The first employs feature distillation [14]. The en-
coder pre-trained with DANN, which excels at produc-
ing domain-agnostic representations, acts as a frozen
“teacher”. The fine-tuning encoder (“student”) is then
guided by minimising an MSE loss (LDistill) between
its feature outputs (ϕstudent(x)) and those of the teacher
(ϕteacher(x)). This process ensures the model retains its
ability to generalise across different data domains. The
primary task was still optimised using LMFLoss. The op-
timisation objectives for this stage were:

θ∗e = argmin
θe

(LLMF + λDistillLDistill) (7)

θ∗t = argmin
θt

LLMF (8)

Here, the λ terms are hyperparameters balancing the dif-
ferent loss components.

The second, simpler, approach freezes the encoder and
only trains the classifier head using the fine-tuning data.

3. Results

We trained the models using the AdamW optimiser. The
learning rate followed a cosine annealing schedule with a
warm-up period. We used early stopping on the validation
set with a 5-epoch patience. We experimented with differ-
ent model architectures, such as changing the encoder to
SEResNet [11]. We also experimented with different fine-
tuning regimes.

3.1. Challenge Results

Our final model used an SEResnet18 encoder with
frozen weights during fine tuning. It was evaluated on
the hidden test sets for the official phase of the PhysioNet
Challenge 2025. As detailed in Table 1, our approach
achieved a mean challenge score of 0.250, ranking 7th out
of 40 competing teams.

Table 1. Official Challenge Results
Metric Score Rank
Overall Performance
Mean Challenge Score 0.250 7/40
Performance on Hidden Test Sets
Challenge Score (REDS-II test set) 0.339 7/40
Challenge Score (SaMi-Trop 3 test set) 0.247 21/40
Challenge Score (ELSA-Brasil test set) 0.164 1/40

We also evaluated several model configurations to assess
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the impact of different components, shown in Table 2.

Table 2. Challenge Score on validation and test datasets.
Encoder λDANN λDistill Local Valid Test
SEResNet18 0.8 0 0.793 0.231 –
SEResNet18 0.8 0.01 0.760 0.234 –
SEResNet18 0.8 N/A 0.627 0.338 0.250
ECGNeXt 0.3 0 0.827 0.230 –
ECGNeXt 0.8 0 0.807 – –
ECGNeXt 0.8 0.05 0.793 0.294 –
ECGNeXt 0.8 N/A 0.713 0.254 –
ECGNeXt 1.0 0.05 0.620 – –
N/A: The encoder was frozen during fine-tuning.

4. Discussion

Our approach used a two-stage training strategy to
tackle the key challenges of this competition: noisy labels,
data imbalance, and shifts between different data sources.

Our method’s effectiveness is shown in the final chal-
lenge results (Table 1). Notably, our model ranked 1st
of 40 teams on the ELSA-Brasil test set. While all test
data was unseen, the ELSA-Brasil data came from a source
completely new to all participants.

Our internal experiments (Table 2) also gave us two ma-
jor insights. First, model simplicity proved more robust.
While complex models like ECGNeXt excelled locally,
they tended to overfit domain-specific features, leading to
poor validation performance. The simpler SEResNet18
generalised better and achieved higher validation scores.

Second, adversarial training and distillation were cru-
cial. A stronger DANN signal improved scores by forcing
the model to learn domain-invariant features. Feature dis-
tillation then effectively preserved this knowledge during
fine-tuning, outperforming other adaptation strategies like
encoder freezing.

While our preliminary study highlights the benefits of
DANN and feature distillation, a more exhaustive set of
studies, including more hyperparameter search, is required
in future work to better quantify the impact of each aspect
of the training strategy. In conclusion, our results show
that combining domain-adversarial training to learn gen-
eralisable features and feature distillation to preserve them
offers a robust framework for mitigating domain shift.
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